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LETTER TO THE EDITOR 

Dynamical scaling properties of a one-dimensional G4 lattice 
model-comparison with mode coupling theory 

S Flach and J Siewertt 
Institui Tur Theoretische Physik. Technixhe UniversiILit Dresden, Mommsenstrasse 13, 
0-8027 Dresden, Federal Republic of Germany 

Received 18 March 1992 

Abstrsei. The dynamical scaling behaviour of the dlsplacement~isplacemenr correlation 
function of lhe one-dimensional 0' lattice model is analysed by use of molecular dy- 
namics simulations. The existence of a cmwver lemperature where relamlion Limes 
dranically increase SuggesU possible applicability of mode coupling theory (MCT) de- 
scribing freezing procsses in undercooled liquids. We find WO independent dynamical 
scaling regions (two master functions describing lhe time Wolution of the mrrelator) 
in accordance wilh M a .  A quantitative comparison of the MCI' predicted scaling laws 
with Ihe calculated ones far the +' model shows significant non-applicability of MCT 
especially for the p relaration process. 

The mode coupling theory (MCT) is considered to be a powerful tool in understanding 
dynamical freezing processes for a large class of structurally disordered systems (111 
and references therein). The mode coupling equations (MCE) describe the dynamics 
of some normalized correlators @,(t) with B a , ( 0 )  = 1, 6,(0) = 0. Usually the 
variables under consideration are density flbctuatlons. The essential proposals of the 
MCT are the prediction of some (ideal) transition from ergodic (@,(t -+ CO) = 0) 
to non-ergodic (aq(t -+ CO) # 0) state8 at a temperature T = Tya and the 
derivation of two dynamical scaling regions for Qq( t) I2,3]. The applicability of MCT 
to real systems seems to depend on the structure of the potential landscape of the 
system [4]. 

Recently a decoupling procedure was proposed by Aksenov et al for a system 
with a second-order phase transition at T = Tc, namely the onecomponent @* 
lattice model [SI 

The resulting equations for the displacementdisplacement correlation function 
Si,(d) = (X , ( t )X , ) ,  Si, = (X,X,) after decoupling read [SI (see also [6,7] for 
detailed analysis) 

t Preen1 addres?.: Insticut fur Theorelische Fesikomerphysik, Univenitht KarlsNhe, Engesserslrasse 7, 
Postfach 6980, D-7503 Karlsruhe 1, Federal Republic of Gemany. 
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A ( + )  = ~ ~ m d l e i " A ( t ) .  

The equations (2)-(4) are a special case of the more general MCE discussed in [l]. 
In general they exhibit a transition from ergodic S,(i -+ CO) = 0 to non-ergodic 
Sq(t - M) = L ,  f 0 at some TPm. This transition is an A, singularity following 
the notations of [I], i.e. for T = KMm the Lq(TPm) = L: solutions are doubly 
degenerate. The whole A, scenario of MCT applies to the dynamics of S,(t), and 
thus near Tf"T two different dynamical scaling laws should appear for T > Tym. 
The normalized correlator @,(t) = S,(t)/S, will exhibit an inflection point for 
T > T,"" at (Dq(tk, ,)  f; = L;/S,(Tym). For 6Q,(t) = @,(t) - f,C < 1 and 
e = (T  - Tf"m)/TFm one obtains the @-scaling law [l]  

6@,(i) = h , J E s ( W , )  (5)  

i, = i o E - ~ ~ = a .  (6) 

For @,(t) < f; one finds the a-scaling law 

r(3) is the Gamma function The parameter X is model dependent. The master 
function g(l) for the @-scaling law (S), (6) can be specified as g(1) - ra for 
g( l )  > 0 and as g ( t )  - -ib for g(2) < 0. The master function F,(t)  for the 
a-scaling law cannot be given in an analytical expression in general. 

The features of the potential landscape of (1) and related models were studied 
for different cases of interaction strength and range [%lo]. Although the model 
(1) has no disorder in the interaction (translational invariance) the structure of the 
potential landscape turns out to be very complex thus not a priori excluding the 
non-applicability of MCT from the point of view of enera/ barrier distributions. 

The case of infinite-range interaction C,, = C o / N ,  however, brought out a 
complete disagreement with MCT [6,7,11] in the sense that no Tym or even its 
indication exists. 

Here we want to analyse the opposite case of nearest-neighbour interaction C,, = 
C6,*,,, for the onedimensional system. Earlier investigations (see e.g. [12-15]) 
pointed out the existence of some crossover temperature separating displacive from 
orderdisorder behaviour [ 161. Indeed molecular dynamics simulations [ 171 confirmed 
for C > 1 the existence of a crossover temperature T', at which relaxation times 
and correlation lengths drastically increase. Lowering C leads to a lowering of T'. 
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Thus for weak coupling C << 1 no crossover is observed [17,18]. The crossover 
phenomenon seems to disappear for two- and threedimensional isotropic systems 
1171. It should be noted that at T* the correlation length of the model (1) with 
nearest-neighbour interaction also increases [17], so we have an unusual dependence 
of the static structure factor S on temperature near T'. Strictly speaking up to now 
it is unclear whether the equations (2)-(4) lead to a non-ergodic transition using the 
exact qdependent values S,(T). So it might happen that the correct treatment of 
the equations mentioned yields only the ergodic solutions fq = 0. 

In this work we performed careful calculations of the displacement-displacement 
correlation function S,,(t) = (X , ( t )X , (O)) .  Our goal is to investigate the dynamical 
scaling behaviour (if any observed) of the imaginary part of the normalized suscepti- 
bility 

4 

We then compare its scaling behaviour with the MCT predictions (5)-(9). We per- 
formed molecular dynamics simulations (MDS) with periodic boundary conditions 
and used the Verlet algorithm [19]. The total energy of the system was conserved 
(microcanonical simulation). The time steps were h = 0.005 and the system sizes 
varied from N = 2000 to N = 8000. We found no h- and N-dependence of our 
calculations; thus finite-size effects can be excluded. The energy was conserved within 
0.001% during one run and the correlation function S,,(t) was calculated with an 
accuracy of 0.001. The initial values S,, varied between 0.7 and 1. To make sure we 
have calculated the correct S u ( t )  dependence we performed two independent runs 
with random initial configurations for every energy. Then we mapped both solutions 
onto each other. We found that the shorter the total simulation time, the shorter 
is the maximum correlation time up to which our two independent results S,,(t) 
reasonably agree. By lowering the energy and fixing some correlation time we found 
a drastic increase of the shortest necessary total simulation time. This indicates that 
the lower the energy, the longer the system needs. to overcome all barriers in the 
potential landscape. 

All calculations were done for C = 4.  In this strongly coupled regime a change of 
C is equivalent to a rescaling of the total energy [ZO]. The temperature was defined 
via T = ( X f ) .  From our previous studies [17] we expect a possible crossover for 
T = 0.3,. . . ,0.35. Thus we performed different runs for temperatures 0.3 < T < 
0.5. The Fourier transformation of S,,(t) we performed using the FILON algorithm 

In figure 1 we show the time dependence of the normalized correlator Qff ( t )  
for various temperatures against time. It should be noted that the characteristic 
microscopic times of the system are of order 211. Indeed we see a shifting of relaxation 
times to higher values with decreasing temperature; however, the shift is only of the 
order 1-2 decades if the temperature decreases from 0.5 to 0.3. The scaling analysis 
has to be done for the more sensitive x{',(u) dependence. In figure 2(a) we show 
$ ( w )  for different temperatures from the temperature interval mentioned. We see 
the high-frequency microscopic excitation band. Because of the appearance of kinks 
separating regions with positive or negative sign of the particle displacements X for 
strong coupling [12,22,23], this excitation band can be described by the dynamics 
of one cluster chain (the cluster sizes become large with lowering T) for T i 0. 

[211. 
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FJgure 1. Normalized wrrelator + , l ( t )  against l o g ( t )  for Iemperatures T = 
0.331; 0.346; 0.364; 0.379; 0.387; 0.397; 0.404; 0.42; 0.432; 0.445; 0.487. 
Higher temperatures correspond lo smaller valuer 01 * r r ( t ) .  

A linearization of the corresponding dynamical problem yields a chain of coupled 
harmonic oscillators. Then a simple calculation for x; (w)  for N - 03 gives 

x X w )  = 0 otherwise. (12) 

are precisely The resulting square mot singularities at w = 4 and w = 
found in figure 2(a). 
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Figure 2. (a) Normalized imaginaly pan of Ihe susceptibilily xi; againsl frequency w for 
temperatures T = 0.331; 0.346; 0.364; 0.379; 0.397; 0.404. Higher temperatures 
correspond IO larger values of xi;. (6) ,yB against log(w) for temperatures T = 
0.331; 0.346; 0.364; 0.379; 0.397; 0.404; 0.432; 0.445. Higher lemperatures 
correspond to larger values of xli in lhe fl'-minimum. 
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In figure 2(b) we plot x:(w) against log(w) to see the low-frequency behaviour. 
We obsexve a low-frequency peak denoted as the a'-peak at w = w,, and a follow- 
ing minimum denoted as the @'-minimum at w = wp,. The a'-peak shifts to lower 
frequencies as temperature is lowered. The p'minimum does nor ship significantly 
with T. Its height, however, decreases with decreasing T. 

Figure3. (a)  Scaled x; /x ; ; (ws, )  against scaled frequency w J w p  for the @'-minimum 
in a log-log plot. T =  0.331; 0.346; 0.364; 0.379; 0.404; 0.432; 0.487. Higher 
wmperatures correspond to larger values of the scaled function outside the p'minimum. 
Ihe dashed line is a power fit x; - wL with a = 6.14, the dashed dotted line is a power 
fit x; .-. w - ~  with b = 1.06. (a) Same as figure 3(a) but on a stretched frequency 
scale. Only the right hand side of the p'minimum is seen. Squares, T = 0.331; 
triangles, T = 0.346; stan, T = 0.364; circles, T = 0.379. Clearly a master function 
is observed. The solid h e  is a fit corresponding to (13). 

'lb discuss applicability of MCT we plot in figure 3(a)  the scaled function 
~ l ; , ~ , ( L j )  = ~ K ( & y ~ , ) / $ ~ ( w ~ , ) ,  Lj = w/wp, .  Clearly we see a master funo 
tion for the p'-minimum. If the ~ c r  A, scenario applies then the power laws 
~ z , ~ , ( L j  > 1) - 2'' and x;,@,(Lj < 1) ,., L j - b  should be valid. From Figure 3(a) 
we find b % 1.06 (dashed dotted line in figure 3(a)) .  Thus we obtain X % 0.47 
(9). For the exponent a from (9) it follows that a % 0.4. In figure 3(a) the dashed 
lime corresponds to a power fit of the high-frequency side of the @'-minimum with 
a = 6.14. A more confident conclusion can be drawn if one stretches the w-scale on 
the high-frequency side of the @'-minimum. In figure 3(b) it is seen that no power 
law ( h e a r  dependence in the log-log plot) is observed. Supposing that at higher fre- 
quencies (near the @'-maximum) a power law is valid, the power exponent a would 
be at least a 2 6.14. So in any case the @'-master function does not satisfy the MCT 
result (9). It is interesting to notice that the high-frequency side of the @'-minimum 
can be fitted by the expression 

log( X " / X $ )  = al[log(w/wp,)l"* at % 28.24 a2 % 2.5 (13) 

as shown by the solid line in figure 3(b). 
The temperature dependence of x;,(wp,) is shown in figure 4. While M(;T pre- 

dicts a linear dependence on (T - TFcr) (see ( S ) ) ,  we clearly observe no linear 
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T 

Figure 4. Squared heighl of the p'minimum s ; F ( w p )  against temperalure 

dependence. The frequency of the P'-minimum wp, shows no temperature depen- 
dence: us, = 0.64 k 0.02 (see figure 2(6)). Thus no essential shift is observed in 
contradiction with MCT (8). 
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Figure 5. Scaled sz/xE(w, , )  against logarilhm of the scaled frequency w/w,r. T = 
0.331; 0.346; 0.379; 0.404; 0.432; 0.487. Higher lemperatures correspond lo 
larger values of lhe height of lhe p'minimum. 

The &-peak scaling is shown in figure 5 for X ; , ~ , ( G )  = x;(Gw,,)/x;;(w,,). 
G = w/w,,. We clearly see a master function describing the or'-peak. The height 
of the a'-peak shows no significant temperature dependence. This is compatible 
with the A, scenario within the MCT [I]. The temperature dependence of w,, is 
shown in figure 6. There is a decreasing of the a'-frequency scale with decreasing 
temperature. A fitting of this curve by MCT predictions (8)  or other scaling laws seems 
not to be reasonable since the scale shifts only over 1-2 decades and the calculation 
errors are too large. It should be noted that an Arrhenius law agrees as well as a 
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MCT fit. Looking at the temperature dependence of viscosities of undercooled liquids 
approaching the glass transition [4], it is clear that distinguishing between strong and 
fragile glass systems is only possible with temperature variations of viscosity over five 
or more decades. 
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Feure 6. Posilion of the o'maximum wet against temperature. 

Summarizing, we found for the onedimensional aP4 lattice. model Iwo dynami- 
cal scaling laws for the displacement-displacement correlation function near some 
crossover temperature. The scaling analysis brought out partially significant quantita- 
tive non-applicability of MCT in its idealized form: (i) no shift of the p'-minimum; (i) 
no h e a r  dependence of x/r',z(wa,) with (T- TPcT); (iii) an unreasonably high value 
of the expected power coefficient a; and (iv) a power law in the scaled logarithmic 
variables on the high-frequency side of the p'-minimum (13). On the other hand the 
existence of two sepurured scaling regions and the existence of a power law in the 
low-frequency part of the p'minimum are well known features of an .4, scenario 
of MCT. It would be dilficult to understand these facts within some scenario of a 
suppressed phase transition due to the one-dimensional system. 'Ib our knowledge, 
then only one dynamical scaling region should appear [24]. 

The MCT does not deal with the critical dependence of the structure factor S, on 
temperature. This seems to be significant in our case because of the drastic increase 
of correlation lengths approaching the crossover region [17]. Moreover, taking into 
account the additional relaxation processes (neglected in the idealized form of MCT 
[1,25,26]) one can change the previous MCT predictions essentially. Thus the appli- 
cability of a non-idealized MCr to model (1) remains an open question. Equations 
(2)-(4), however, cannot describe all of the dynamical features of model (1). 

It is a pleasure for us to thank E I Kornilov for stimulating discussions. We thank 
L Sjogren for critical comments and J Schreiber for continuing interest in this work. 
M Fuchs and A Latz helped us with the numerics of the Fourier transfonation. 
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