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LETTER TO THE EDITOR

Dynamical scaling properties of a one-dimensional ®* lattice
model—comparison with mode coupling theory

S Flach and J Siewert}

Institut fiir Theoretische Physik, Technische Universitit Dresden, Mommsenstrasse 13,
D-8027 Dresden, Federal Republic of Germany

Received 18 March 1992

Abstract. The dynamical scaling behaviour of the displacemeni—displacement correlation
function of the one-dimensional ®* lattice mode! is analysed by use of molecular dy-
namics simulations. The existence of a crossover temperature where relaxation times
drastically increase suggests possible applicability of mode coupling theory (McT) de-
scribing freezing processes in undercooled liquids. We find two independent dynamical
scaling regions (two master functions describing the time evolution of the correlator)
in accordance wilth MCT, A quantilative comparison of the MCT predicted scaling laws
with the calculated ones for the ¢ model shows significant non-applicability of MCT
especially for the § relaxation process.

The mode coupling theory (MCT) is considered to be a powerful tool in understanding
dynamical freezing processes for a large class of structurally disordered systems ([1]
and references therein). The mode coupling equations (MCE) describe the dynamics
of some normalized correlators ®,(t) with ¢,(0) = 1, é (0} = 0. Usually the
variables under consideration are densrcy ﬂuetuatxons The essenual proposals of the
MCT are the prediction of some (ideal) transition from ergodic (2,(t — c0) = 0)
to non-ergodic (®,(t — oo) # 0) states at a temperature T = TMCT and the
derivation of two dynamical scaling regions for ® () [2,3]. The applicability of MCT
to real systems seems to depend on the structure of the potential landscape of the
system [4].

Recently a decoupling procedure was proposed by Aksenov et af for a system
with a second-order phase transition at T = T, namely the one-component &*
lattice model [5]

N
=3 (5P - 5X +5X0) + LS cux-xgn

T=1 4=
The resulting equations for the displacement-displacement correlation function

S (1) = (X (1) X,), S = (X;X,) after decoupling read [5] (see also [6,7] for
detailed analysis)
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S (z) = 5 : : (2)
g 2~ T8 (2 — M,(2)/T)-!

M (t) = 65%(2) (3

A(z) = %fowdteiﬂA(t). )

The equations (2)—(4) are a special case of the more general MCE discussed in [1].
In general they exhibit a transition from ergodic S (f — co) = 0 to non-ergodic
S,(t — 00) = L, # 0 at some TMCT, This transition is an A, singularity following
the notations of [1], ie. for T = TMCT the L (TMCT) = LS solutions are doubly
degenerate. The whole A, scenario of MCT apphes to the dynamics of S (¢), and

thus near TMCT two different dynamical scaling laws should appear for T > TMCT,
The normahzed correlator ¢ (1) = S (1)/S, will exhibit an inflection pomt for

T > TMCT at & (tyg) = f5 = LS/ S, (TMCT) For §@,(t) = ®,(1) - f¢ < 1 and
e=(T- TMCT) /TMCT one obtains the S-scaling law {1]
8@, (1) = hyVeg(t/t,) &)
. te =t05"1/2“. (6)
For @ (1) < f; one finds the a-scaling law
®,(2) = F(¢/7.) Q)
T, = tos—l/Qa—I/ZB (8)

I'?(1 —a) _ T31+8b)
T(1-2a) T(1+2b)

=A. : (9)

I(x) is the Gamma function. The parameter A is model dependent. The master

function g(¢) for the G-scaling law (5), (6) can be specified as g(t) ~ t~¢ for

g(t) > 0 and as g(t) ~ —t* for g{t) < 0. The master function F. L (1) for the
a-scaling law cannot be given in an analytical expression in general,

The features of the potential landscape of (1) and related models were studied
for different cases of interaction strength and range [8-10). Although the model
(1) has no disorder in the interaction (translational invariance) the structure of the
potential landscape turns out to be very complex thus not a priori excluding the
non-applicability of MCT from the point of view of energy barrier distributions.

The case of infinite-range interaction C;; = C,/N, however, brought out a
complete disagreement with MCT [6,7,11] in the sense that no TMCT or even its
indication exists.

Here we want to analyse the opposite case of nearest-neighbour interaction C;, =
€64, for the one-dimensional system. Earlier investigations (see e.g. [12-15))
pointed out the existence of some crossover temperature separating displacive from
order-disorder behaviour [16). Indeed molecular dynamics simulations [17] confirmed
for C > 1 the existence of a crossover temperature T*, at which relaxation times
and correlation lengths drastically increase. Lowering C' leads to a lowering of T
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Thus for weak coupling C' <« 1 no crossover is observed [17,18]. The crossover
pheromenon seems to disappear for two- and three-dimensional isotropic systems
[17]. It should be noted that at T the correlation length of the model (1) with
nearest-neighbour interaction also increases [17], so we have an unusual dependence
of the static structure factor S, on temperature near T*. Strictly speaking up to now
it is unclear whether the equations (2)-(4) lead to a non-ergodic transition using the
exact g-dependent values S, (T). So it might happen that the correct treatment of
the equations mentioned yields only the ergodic solutions f, = 0.

In this work we performed careful calculations of the displacement—displacement
correlation function S;;(t} = (X,;(1)X;(0)). Our goal is to investigate the dynamical
scaling behaviour (if any observed) of the imaginary part of the normalized suscepti-
bility

X =w /; dt et (1). (10)

We then compare its scaling behaviour with the MCT predictions (5)-(9). We per-
formed molecular dynamics simulations (MDs) with periodic boundary conditions
and used the Verlet algorithm [19]. The total energy of the system was conserved
(microcanonical simulation). The time steps were h = 0.005 and the system sizes
varied from N = 2000 to N = 8000. We found no h- and N-dependence of our
calculations; thus finite-size effects can be excluded. The energy was conserved within
0.001% during one run and the correlation function S;,(f) was calculated with an
accuracy of 0.001. The initial values S;; varied between 0.7 and 1. To make sure we
have calculated the correct S, (t) dependence we performed two independent runs
with random initial configurations for every energy. Then we mapped both solutions
onto each other. We found that the shorter the total simulation time, the shorter
is the maximum correlation time up to which our two independent results S, (t)
reasonably agree. By lowering the energy and fixing some correlation time we found
a drastic increase of the shortest necessary total simulation time. This indicates that
the lower the energy, the longer the system needs to overcome all barriers in the
potential landscape.

All caleulations were done for C' = 4. In this strongly coupled regime a change of
C' is equivalent to a rescaling of the total energy [20]. The temperature was defined
via T = (X?). From our previous studies [17] we expect a possible crossover for
T =0.3,...,0.35. Thus we performed different runs for temperatures 0.3 < T <
0.5. The Fourier transformation of 5,(t) we performed using the FILON algorithm
[21].

In figure 1 we show the time dependence of the normalized correlator @,,(t)
for various temperatures against time. It should be noted that the characteristic
microscopic times of the system are of order 2x. Indeed we see a shifting of relaxation
times to higher values with decreasing temperature; however, the shift is only of the
order 1-2 decades if the temperature decreases from 0.5 to 0.3. The scaling analysis
has to be done for the more sensitive xj;(w) dependence. In figure 2(a) we show
x};(w) for different temperatures from the temperature interval mentioned. We see
the high-frequency microscopic excitation band. Because of the appearance of kinks
separating regions with positive or negative sign of the particle displacements X for
strong coupling [12,22,23], this excitation band can be described by the dynamics
of one cluster chain (the cluster sizes become large with lowering T) for T — 0.
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 Figure 1. Normalized comrelator &, (f) against log(¢) for temperatures T =
0.331; 0.346; 0.364; 0.379; 0.387; 0.397; 0.404; 0.42; 0.432; 0.445; 0.487.
Higher temperatures correspond o smaller values of $(t).

A linearization of the corresponding dynamical problem yields a chain of coupled
harmonic oscillators. Then a simple calculation for x}j(w) for N — oo gives
T 1
A w) = 5
Xil) = =S e = (o? = %)

xf(w) =0 otherwise. (12)

2gw?g4C+2 (11)

The resulting square root singularities at w = V2 and w = /4C + 2 are precisely
found in figure 2(a).
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Figure 2. (a) Normalized imaginary part of the susceptibility xfi against frequency w for
temperatures T = 0,331; 0.346; 0.364; 0.379; 0.397; 0.404. Higher temperatures
correspond to larger values of xii. (b) xjf against log{w) for temperatures T =
0.331; 0.346; 0.364; 0.379; 0.397; 0.404; 0.432; 0.445. Higher temperatures
correspond to larger values of x}f in the 8'-minimum.
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In figure 2(b) we plot x{j(w) against log(cw) to see the low-frequency behaviour.
We observe a low-frequency peak denoted as the o'-peak at w = w,, and a follow-
ing minimum denoted as the §'-minimum at w = wy,. The o'-peak shifts to lower
frequencies as temperature is lowered. The G'-minimum does not shift significantly
with T, Its height, however, decreases with decreasing T.
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Figure 3. (a) Scaled xJ} /x};{wg) against scaled frequency w/wg for the §/-minimum
in a log-log plot. T—" 0 331; 0.346; 0.364; 0.379; 0.404; 0.432; 0.487. Higher
lemperatures correspond o Iarger values of the scaled function outside the §'-minimum.
The dashed line is a power fit x}} ~ w® with a = 6.14, the dashed dotted line is a power
fit xf} ~w™® with b = 1.06. (b) Same as figure 3(a) bul on a streiched frequency
scale. Only the right hand side of the 8'-minimum is seen. Squares, T == 0.331;
triangles, T = 0.3486; stars, T" = 0.364; circles, T = 0.379. Clearly a master function
is observed. The solid line is a fit corresponding to (13).

To discuss applicability of MCT we plot in figure 3(a) the scaled function
X (@) = xi(Gwe )/ xli(wa), & = wfwg. Clearly we see a2 master func-
tion for the ﬂ'-minimum If the MCT A, scenario applies then the power laws
X al& > 1) ~ &* and xf; (& < 1) ~ &~* should be valid. From Figure 3(a)
we ﬁnd b = 1.06 (dashed dotted line in figure 3(a)). Thus we obtain A = 0.47
(9). For the exponent a from (9) it follows that ¢ = 0.4. In figure 3(z) the dashed
line corresponds to a power fit of the high-frequency side of the 8'-minimum with
a = 6.14. A more confident conclusion can be drawn if one stretches the w-scale on
the high-frequency side of the @'-minimum. In figure 3(d) it is seen that no power
law (linear dependence in the log—log plot) is observed. Supposing that at higher fre-
quencies (near the 5’-maximum} a power law is valid, the power exponent ¢ would
be at least ¢ > 6.14. So in any case the 3'-master function does not satisfy the MCT
result (9). It is interesting to notice that the high-frequency side of the 3'-minimum
can be fitted by the expression

log(x"/xa) = a,[log(w/fwg }]*? a; & 28.24 a, X 2.5 (13)

as shown by the solid line in figure 3(b).
The temperature dependence of x{*(wg ) is shown in figure 4. While MCT pre-

dicts a linear dependence on (T - TCMCT) (see (5)), we clearly observe no linear
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Figure 4. Squared height of the #’-minimum x\}Z2(w s ) against temperature.

dependence. The frequency of the 8'-minimum wy,, shows no temperature depen-
dence: wpg, = 0.64 £ 0.02 (see figure 2(b)). Thus no essential shift is observed in
contradiction with MCT (8).
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Figure 5. Scaled xj}/x[i(wq) against logarithm of the scaled frequency w/w,r. T =
0.331; 0.346; 0.379; 0.404; 0.432; 0.487, Higher temperatures correspond o
larger values of the height of the 3'-minimum.

The o'-peak scaling is shown in figure 5 for x7} (&) = x§j{(Gwq. )/ xi{wa),s
@ = wfw,, We clearly see a master function describing the o’-peak. The height
of the o'-peak shows no significant temperature dependence. This is compatible
with the A, scenario within the MCT {I}. The temperature dependence of w,, is
shown in figure 6. There is a decreasing of the o'-frequency scale with decreasing
temperature. A fitting of this curve by MCT predictions (8) or other scaling laws seems
not to be reasonable since the scale shifts only over 1-2 decades and the calculation
errors are too large. It should be noted that an Arrhenius law agrees as well as a
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MCT fit. Looking at the temperature dependence of viscosities of undercooled liquids
approaching the plass transition [4)], it is clear that distinguishing between strong and
fragile glass systems is only possible with temperature variations of viscosity over five
or more decades.
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T

Figure 6. Pasition of the of-maximum w,+ against lemperature.

Summarizing, we found for the one-dimensional & lattice model two dynami-
cal scaling laws for the displacement—displacement correlation function near some
crossover temperature. The scaling analysis brought out partially significant quantita-
tive non-applicability of MCT in its idealized form: (i) no shift of the 3'-minimum; (ii)
no linear dependence of x‘S',?(wﬁ,) with (T — TMETy; (iii) an unreasonably high value
of the expected power coefficient ¢; and (iv) a power law in the scaled logarithmic
variables on the high-frequency side of the ’-minimum (13). On the other hand the
existence of two separated scaling regions and the existence of a power law in the
low-frequency part of the @'-minimum are well known features of an A, scenario
of McCT. It would be difficult to understand these facts within some scenario of a
suppressed phase transition due to the one-dimensional system. To our knowledge,
then only one dynamical scaling region should appear [24)].

The MCT does not deal with the critical dependence of the structure factor S, on
temperature. This seems to be significant in our case because of the drastic increase
of correlation lengths approaching the crossover region [17]. Moreover, taking into
account the additional relaxation processes (neglected in the idealized form of MCT
[1,25,26]) one can change the previous MCT predictions essentially. Thus the appli-
cability of a non-idealized MCT to model (1) remains an open question. Equations
(2)-(4), however, cannot describe all of the dynamical features of model (1).

It is a pleasure for us to thank E I Kornilov for stimulating discussions. We thank
L Sjogren for critical comments and J Schreiber for continuing interest in this work.
M Fuchs and A Latz helped us with the numerics of the Fourier transformation.
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